Wednesday, September 5, 2012

Significant Physics Constants

  • Sources
  • $\epsilon_0 \approx 8.854187817620...  10^{-12} $
    • Source = Wikipedia
    • $\mbox{Used in Coulomb's Law defining the electrostatic force}$
      • $F_c = \left(\dfrac{1}{4 \pi \epsilon_0}\right) \left(\dfrac{q_1 q_2}{r^2}\right)$
    • $\epsilon_0  \mbox{is defined by:}$
      • $\epsilon_0 = \dfrac{1}{\mu_0 c^2} $
  • $\mu_0 = 4 \pi 10^{-7} \approx  1.2566370614...  10^{-6}$
  • $\mbox{Gravitational constant} \; G = 6.67384  10^{-11} $
    • Source = Wikipedia
    • According to the law of universal gravitation, the attractive force (F) between two bodies is proportional to the product of their masses (m1 and m2), and inversely proportional to the square of the distance, r, (inverse-square law) between them:
      • $F_g = G  \dfrac{m_1  m_2}{r^2} $

Tuesday, August 7, 2012

Final 17 - Springs and Tables


Given:

  • $\mbox{A 1 kg mass is connected to a spring with a constant of 350 newtons/meter.} $
  • $\mbox{The spring is compressed 25 centimeters and let go from 2 meters.}$

Question:

  • $\mbox{How far away will the mass impact the floor?} $

Rationale:

  • $PE_{spring} = KE_{mass} $
    • $.5 K x^2 = .5 m V_x^2   $ 
    • $V_x^2 = \dfrac{(.5 * K * x^2 )}{(.5 * m)}$
  • $t_y^2 = \dfrac{2 * \Delta{y}}{g}   $
  • $t_y  = t_x $
  • $\Delta{x} = V_x * t_x $
    • $\Delta{x} = \sqrt{\dfrac{(.5 * K * x^2 )}{(.5 * m)}} *  \sqrt{\dfrac{2 * \Delta{y}}{g}}    $

Calculate:

  • $\Delta{x} = \sqrt{\dfrac{(.5 * 350 * .25^2 )}{(.5 * 1)}} *  \sqrt{\dfrac{2 * 2}{10}}    $ 
    • $\Delta_{x} = \sqrt{10.9375 * .5} *  \sqrt{.4} = 4.6770717 * .632455 = 2.9580374$ 
    • $\Delta_{x} \approx 2.96 \; \mbox{meters}$

References:

  • $ $

Final 16 - Bikes and Buses


Final 15 - Gravity and Electricy


Given:

  • $\mbox{A mass of 8 kg and a charge of 0.1 coulombs}$
    • $\mbox{Is dropped from a height of 1.2 meters}$
    • $\mbox{In the continuing presence of an  electric field of 100 newtons/coulomb.} $

Question:

  • $\mbox{What distance d does the mass hit the floor?} $

Rationale:

  • $\Delta{y} = 0.5 g t^2 $
    • $ t^2 = \dfrac{2 \Delta{y} }{g} $
  • $F_{electric} = F_x = m a_x $
    • $E q =  m a_x $
    • $a_x = \dfrac{(E q)}{m} $
  • $t_y^2 = t_x^2 $
  • $\Delta{x} = .5 (\dfrac{(E q)}{m})  \dfrac{2 \Delta{y} }{g} $

Calculate:

  • $\Delta{x} = .5 (\dfrac{(100 * .1)}{8})  \dfrac{2 * 1.2 }{10} = 0.15 \; \mbox{meters}$ 

References:

  • $ $

Final 14 - Pushing A Car


Given:

  • $\mbox{A car is being pushed by three equal force with one on each side at 30 degrees and one in the rear.} $
  • $\mbox{The 1000 kg car is being accelerated at 0.5 m/s/s by  the efforts of these three.}   $

Question:

  • $\mbox{What force are each exerting on the car?} $

Rationale:

  • $F = F_1 = F_2 = F_3 $
  • $F_y = F \cos\alpha \; \mbox{(and there are two of these forces)} $
    • $F_{total} = F + (2 F \cos\alpha)   $
  • $F_{car} = m a = F + (2 F \cos\alpha)   $
  • $ F (1+(2 \sin\alpha) = m a $
  • $ F = \dfrac{( m a)}{(1+(2 \cos\alpha)} $

Calculate:

  • $F = \dfrac{(100 * .5)}{(1 + (2 * .866025)} = \dfrac{500}{2.73205} = 183.012756 \approx 183$

References:

  • $ $

Final 13 - Double Inclined Plane


Given:

  • $\mbox{Two masses connected by a rope and pully} $
    • $\mbox{mass 1 is on a plane inclined at an angle alpha} $
    • $\mbox{mass 2 is on a plane inclined at an angle beta} $
  • $a = g \frac{M_{unknown}\sin{\beta}  {(operator)}  M_{unknown}\sin{\alpha}}{M_1 ({operator}) M_2}   $

Question:

  • $What are subscripts and operators? $

Rationale:

  • $M_1 \; \mbox{is associated with angle alpha} $
  • $M_2 \; \mbox{is associated with angle beta} $
    • $a = g \frac{M_2 \sin{\beta}  {(operator)}  M_1 \sin{\alpha}}{M_1 ({operator}) M_2}   $
  • $\mbox{The denominator operator cannot be multiply or divide}$
    • $\mbox{Since if either mass is zero, then the equation  would be indeterminate}   $
    • $\mbox{So the operator must be + or - }$
      • $\mbox{But it cannot be minus,  since it would indeterminate is the masses are equal}$
      • $\mbox{Therefore the denominator operator is plus.}$
  • $\mbox{If the masses are equal and the angles are equal, }$
    • $\mbox{Then the numerator must be zero}$
    • $\mbox{Thus the numerator operator must be minus.}$

Calculate:

  • $ $

References:

  • $ $

Final 12 - Water Clock


Given:

  • $\mbox{In one time interval, a ball rolls down the incline 0.8 meters.} $

Question:

  • $\mbox{What interval does the ball travel in the second and third time intervals?} $

Rationale & Calculate:

  • $\Delta{x} \varpropto t^2 $
    • $\Delta{x-1} = 1 * K $
    • $\Delta{x-2} = 4 * K$ 
    • $\Delta{x-3} = 9 * K $ 
  • $ K = 0.8 \; \mbox{since at t-1, x-1 is 0.8} $
    • $\Delta{x-2} = 3.2 $ 
    • $\Delta{x-3} = 7.2 $ 
  • $ Interval_{2-1} = 3.2 - 0.8 = 2.4 $
  • $ Interval_{3-2} = 7.2 - 3.2 = 4.0 $

References: