Final 17 - Springs and Tables
Given:
- $\mbox{A 1 kg mass is connected to a spring with a constant of 350 newtons/meter.} $
- $\mbox{The spring is compressed 25 centimeters and let go from 2 meters.}$
Question:
- $\mbox{How far away will the mass impact the floor?} $
Rationale:
- $PE_{spring} = KE_{mass} $
- $.5 K x^2 = .5 m V_x^2 $
- $V_x^2 = \dfrac{(.5 * K * x^2 )}{(.5 * m)}$
- $t_y^2 = \dfrac{2 * \Delta{y}}{g} $
- $t_y = t_x $
- $\Delta{x} = V_x * t_x $
- $\Delta{x} = \sqrt{\dfrac{(.5 * K * x^2 )}{(.5 * m)}} * \sqrt{\dfrac{2 * \Delta{y}}{g}} $
Calculate:
- $\Delta{x} = \sqrt{\dfrac{(.5 * 350 * .25^2 )}{(.5 * 1)}} * \sqrt{\dfrac{2 * 2}{10}} $
- $\Delta_{x} = \sqrt{10.9375 * .5} * \sqrt{.4} = 4.6770717 * .632455 = 2.9580374$
- $\Delta_{x} \approx 2.96 \; \mbox{meters}$
References:
No comments:
Post a Comment