Processing math: 5%

Tuesday, August 7, 2012

Final 11 - Dead Reckoning


Given:

  • \mbox{A ship travels:}
    • \mbox{East at 12 km/hour for 2 hours}
    • \mbox{Then south at 20 km/hour for 1 hour}
    • \mbox{Then east at 15 km/hour for 3 hours}
    • \mbox{Then northeast into port at 8 km/hour for 1 hour.}

Question:

  • \mbox{What is the straight line distance traveled to port ? }

Rationale:

  • \mbox{Segment-distance}  = velocity * time
  • East_{distance} = \Delta{x}
  • South_{distance} = \Delta{y}
  • -\Delta{y_{northeast} = \Delta{x_{northeast}} = \sin{45^{\circ}}} * Northeast_{distance}
  • \mbox{Straight-line-distance} = \sqrt{(\Delta_{x-total})^2 + (\Delta_{y-total})^2 }

Calculate:

  • East_{distance} = ((12) (2.5)) + ((15) (3)) =  75
  • South_{distance} = (20) (1) = 20
  • -\Delta{y_{northeast}}  = \Delta{x_{northeast}} = (0.707106781) (8) (1) = 5.656854
  • \Delta_{x} = 75 +  5.656854 = 80.656854
  • \Delta_{y} = 20 - 5.656854 = 14.343146
  • \mbox{Straight-line-distance} = \sqrt{(80.656854)^2 + (14.343146)^2}
    • \mbox{Straight-line-distance} = \sqrt{(6505.5280 + 205.7258 )} = \sqrt{6711.2538} 
    • \mbox{Straight-line-distance} =81.9222 \approx 81.9

References:

No comments:

Post a Comment