Tuesday, August 7, 2012

Final 11 - Dead Reckoning


Given:

  • $\mbox{A ship travels:}$
    • $\mbox{East at 12 km/hour for 2 hours} $
    • $\mbox{Then south at 20 km/hour for 1 hour}$
    • $\mbox{Then east at 15 km/hour for 3 hours}$
    • $\mbox{Then northeast into port at 8 km/hour for 1 hour.} $

Question:

  • $\mbox{What is the straight line distance traveled to port ? }$

Rationale:

  • $\mbox{Segment-distance}  = velocity * time $
  • $East_{distance} = \Delta{x} $
  • $South_{distance} = \Delta{y} $
  • $-\Delta{y_{northeast} = \Delta{x_{northeast}} = \sin{45^{\circ}}} * Northeast_{distance} $
  • $\mbox{Straight-line-distance} = \sqrt{(\Delta_{x-total})^2 + (\Delta_{y-total})^2 } $

Calculate:

  • $East_{distance} = ((12) (2.5)) + ((15) (3)) =  75 $
  • $South_{distance} = (20) (1) = 20 $
  • $ -\Delta{y_{northeast}}  = \Delta{x_{northeast}} = (0.707106781) (8) (1) = 5.656854 $
  • $\Delta_{x} = 75 +  5.656854 = 80.656854 $
  • $\Delta_{y} = 20 - 5.656854 = 14.343146 $
  • $\mbox{Straight-line-distance} = \sqrt{(80.656854)^2 + (14.343146)^2} $
    • $\mbox{Straight-line-distance} = \sqrt{(6505.5280 + 205.7258 )} = \sqrt{6711.2538}  $
    • $\mbox{Straight-line-distance} =81.9222 \approx 81.9 $

References:

  • $ $

No comments:

Post a Comment