Final 11 - Dead Reckoning
Given: 
- $\mbox{A ship travels:}$
 
- $\mbox{East at 12 km/hour for 2 hours} $
 
- $\mbox{Then south at 20 km/hour for 1 hour}$
 
- $\mbox{Then east at 15 km/hour for 3 hours}$
 
- $\mbox{Then northeast into port at 8 km/hour for 1 hour.}   $
 
Question: 
- $\mbox{What is the straight line distance traveled to port ?   }$
 
Rationale: 
- $\mbox{Segment-distance}  = velocity * time   $
 
- $East_{distance} = \Delta{x} $
 
- $South_{distance} = \Delta{y} $
 
- $-\Delta{y_{northeast} = \Delta{x_{northeast}} = \sin{45^{\circ}}} * Northeast_{distance} $
 
- $\mbox{Straight-line-distance} = \sqrt{(\Delta_{x-total})^2 + (\Delta_{y-total})^2 } $
 
Calculate: 
- $East_{distance} = ((12) (2.5)) + ((15) (3)) =  75   $
 
- $South_{distance} = (20) (1) = 20 $
 
- $ -\Delta{y_{northeast}}  = \Delta{x_{northeast}} = (0.707106781) (8) (1) = 5.656854 $
 
- $\Delta_{x} = 75 +  5.656854 = 80.656854 $
 
- $\Delta_{y} = 20 - 5.656854 = 14.343146 $
 
- $\mbox{Straight-line-distance} = \sqrt{(80.656854)^2 + (14.343146)^2} $
 
- $\mbox{Straight-line-distance} = \sqrt{(6505.5280 + 205.7258 )} = \sqrt{6711.2538}  $
 
- $\mbox{Straight-line-distance} =81.9222 \approx 81.9 $
 
References: 
 
 
 
          
      
 
  
 
 
 
 
 
 
 
 
 
 
 
No comments:
Post a Comment