Final 11 - Dead Reckoning
Given:
- $\mbox{A ship travels:}$
- $\mbox{East at 12 km/hour for 2 hours} $
- $\mbox{Then south at 20 km/hour for 1 hour}$
- $\mbox{Then east at 15 km/hour for 3 hours}$
- $\mbox{Then northeast into port at 8 km/hour for 1 hour.} $
Question:
- $\mbox{What is the straight line distance traveled to port ? }$
Rationale:
- $\mbox{Segment-distance} = velocity * time $
- $East_{distance} = \Delta{x} $
- $South_{distance} = \Delta{y} $
- $-\Delta{y_{northeast} = \Delta{x_{northeast}} = \sin{45^{\circ}}} * Northeast_{distance} $
- $\mbox{Straight-line-distance} = \sqrt{(\Delta_{x-total})^2 + (\Delta_{y-total})^2 } $
Calculate:
- $East_{distance} = ((12) (2.5)) + ((15) (3)) = 75 $
- $South_{distance} = (20) (1) = 20 $
- $ -\Delta{y_{northeast}} = \Delta{x_{northeast}} = (0.707106781) (8) (1) = 5.656854 $
- $\Delta_{x} = 75 + 5.656854 = 80.656854 $
- $\Delta_{y} = 20 - 5.656854 = 14.343146 $
- $\mbox{Straight-line-distance} = \sqrt{(80.656854)^2 + (14.343146)^2} $
- $\mbox{Straight-line-distance} = \sqrt{(6505.5280 + 205.7258 )} = \sqrt{6711.2538} $
- $\mbox{Straight-line-distance} =81.9222 \approx 81.9 $
References:
No comments:
Post a Comment