Wednesday, September 5, 2012

Significant Physics Constants

  • Sources
  • $\epsilon_0 \approx 8.854187817620...  10^{-12} $
    • Source = Wikipedia
    • $\mbox{Used in Coulomb's Law defining the electrostatic force}$
      • $F_c = \left(\dfrac{1}{4 \pi \epsilon_0}\right) \left(\dfrac{q_1 q_2}{r^2}\right)$
    • $\epsilon_0  \mbox{is defined by:}$
      • $\epsilon_0 = \dfrac{1}{\mu_0 c^2} $
  • $\mu_0 = 4 \pi 10^{-7} \approx  1.2566370614...  10^{-6}$
  • $\mbox{Gravitational constant} \; G = 6.67384  10^{-11} $
    • Source = Wikipedia
    • According to the law of universal gravitation, the attractive force (F) between two bodies is proportional to the product of their masses (m1 and m2), and inversely proportional to the square of the distance, r, (inverse-square law) between them:
      • $F_g = G  \dfrac{m_1  m_2}{r^2} $

Tuesday, August 7, 2012

Final 17 - Springs and Tables


Given:

  • $\mbox{A 1 kg mass is connected to a spring with a constant of 350 newtons/meter.} $
  • $\mbox{The spring is compressed 25 centimeters and let go from 2 meters.}$

Question:

  • $\mbox{How far away will the mass impact the floor?} $

Rationale:

  • $PE_{spring} = KE_{mass} $
    • $.5 K x^2 = .5 m V_x^2   $ 
    • $V_x^2 = \dfrac{(.5 * K * x^2 )}{(.5 * m)}$
  • $t_y^2 = \dfrac{2 * \Delta{y}}{g}   $
  • $t_y  = t_x $
  • $\Delta{x} = V_x * t_x $
    • $\Delta{x} = \sqrt{\dfrac{(.5 * K * x^2 )}{(.5 * m)}} *  \sqrt{\dfrac{2 * \Delta{y}}{g}}    $

Calculate:

  • $\Delta{x} = \sqrt{\dfrac{(.5 * 350 * .25^2 )}{(.5 * 1)}} *  \sqrt{\dfrac{2 * 2}{10}}    $ 
    • $\Delta_{x} = \sqrt{10.9375 * .5} *  \sqrt{.4} = 4.6770717 * .632455 = 2.9580374$ 
    • $\Delta_{x} \approx 2.96 \; \mbox{meters}$

References:

  • $ $

Final 16 - Bikes and Buses


Final 15 - Gravity and Electricy


Given:

  • $\mbox{A mass of 8 kg and a charge of 0.1 coulombs}$
    • $\mbox{Is dropped from a height of 1.2 meters}$
    • $\mbox{In the continuing presence of an  electric field of 100 newtons/coulomb.} $

Question:

  • $\mbox{What distance d does the mass hit the floor?} $

Rationale:

  • $\Delta{y} = 0.5 g t^2 $
    • $ t^2 = \dfrac{2 \Delta{y} }{g} $
  • $F_{electric} = F_x = m a_x $
    • $E q =  m a_x $
    • $a_x = \dfrac{(E q)}{m} $
  • $t_y^2 = t_x^2 $
  • $\Delta{x} = .5 (\dfrac{(E q)}{m})  \dfrac{2 \Delta{y} }{g} $

Calculate:

  • $\Delta{x} = .5 (\dfrac{(100 * .1)}{8})  \dfrac{2 * 1.2 }{10} = 0.15 \; \mbox{meters}$ 

References:

  • $ $

Final 14 - Pushing A Car


Given:

  • $\mbox{A car is being pushed by three equal force with one on each side at 30 degrees and one in the rear.} $
  • $\mbox{The 1000 kg car is being accelerated at 0.5 m/s/s by  the efforts of these three.}   $

Question:

  • $\mbox{What force are each exerting on the car?} $

Rationale:

  • $F = F_1 = F_2 = F_3 $
  • $F_y = F \cos\alpha \; \mbox{(and there are two of these forces)} $
    • $F_{total} = F + (2 F \cos\alpha)   $
  • $F_{car} = m a = F + (2 F \cos\alpha)   $
  • $ F (1+(2 \sin\alpha) = m a $
  • $ F = \dfrac{( m a)}{(1+(2 \cos\alpha)} $

Calculate:

  • $F = \dfrac{(100 * .5)}{(1 + (2 * .866025)} = \dfrac{500}{2.73205} = 183.012756 \approx 183$

References:

  • $ $

Final 13 - Double Inclined Plane


Given:

  • $\mbox{Two masses connected by a rope and pully} $
    • $\mbox{mass 1 is on a plane inclined at an angle alpha} $
    • $\mbox{mass 2 is on a plane inclined at an angle beta} $
  • $a = g \frac{M_{unknown}\sin{\beta}  {(operator)}  M_{unknown}\sin{\alpha}}{M_1 ({operator}) M_2}   $

Question:

  • $What are subscripts and operators? $

Rationale:

  • $M_1 \; \mbox{is associated with angle alpha} $
  • $M_2 \; \mbox{is associated with angle beta} $
    • $a = g \frac{M_2 \sin{\beta}  {(operator)}  M_1 \sin{\alpha}}{M_1 ({operator}) M_2}   $
  • $\mbox{The denominator operator cannot be multiply or divide}$
    • $\mbox{Since if either mass is zero, then the equation  would be indeterminate}   $
    • $\mbox{So the operator must be + or - }$
      • $\mbox{But it cannot be minus,  since it would indeterminate is the masses are equal}$
      • $\mbox{Therefore the denominator operator is plus.}$
  • $\mbox{If the masses are equal and the angles are equal, }$
    • $\mbox{Then the numerator must be zero}$
    • $\mbox{Thus the numerator operator must be minus.}$

Calculate:

  • $ $

References:

  • $ $

Final 12 - Water Clock


Given:

  • $\mbox{In one time interval, a ball rolls down the incline 0.8 meters.} $

Question:

  • $\mbox{What interval does the ball travel in the second and third time intervals?} $

Rationale & Calculate:

  • $\Delta{x} \varpropto t^2 $
    • $\Delta{x-1} = 1 * K $
    • $\Delta{x-2} = 4 * K$ 
    • $\Delta{x-3} = 9 * K $ 
  • $ K = 0.8 \; \mbox{since at t-1, x-1 is 0.8} $
    • $\Delta{x-2} = 3.2 $ 
    • $\Delta{x-3} = 7.2 $ 
  • $ Interval_{2-1} = 3.2 - 0.8 = 2.4 $
  • $ Interval_{3-2} = 7.2 - 3.2 = 4.0 $

References:

Final 11 - Dead Reckoning


Given:

  • $\mbox{A ship travels:}$
    • $\mbox{East at 12 km/hour for 2 hours} $
    • $\mbox{Then south at 20 km/hour for 1 hour}$
    • $\mbox{Then east at 15 km/hour for 3 hours}$
    • $\mbox{Then northeast into port at 8 km/hour for 1 hour.} $

Question:

  • $\mbox{What is the straight line distance traveled to port ? }$

Rationale:

  • $\mbox{Segment-distance}  = velocity * time $
  • $East_{distance} = \Delta{x} $
  • $South_{distance} = \Delta{y} $
  • $-\Delta{y_{northeast} = \Delta{x_{northeast}} = \sin{45^{\circ}}} * Northeast_{distance} $
  • $\mbox{Straight-line-distance} = \sqrt{(\Delta_{x-total})^2 + (\Delta_{y-total})^2 } $

Calculate:

  • $East_{distance} = ((12) (2.5)) + ((15) (3)) =  75 $
  • $South_{distance} = (20) (1) = 20 $
  • $ -\Delta{y_{northeast}}  = \Delta{x_{northeast}} = (0.707106781) (8) (1) = 5.656854 $
  • $\Delta_{x} = 75 +  5.656854 = 80.656854 $
  • $\Delta_{y} = 20 - 5.656854 = 14.343146 $
  • $\mbox{Straight-line-distance} = \sqrt{(80.656854)^2 + (14.343146)^2} $
    • $\mbox{Straight-line-distance} = \sqrt{(6505.5280 + 205.7258 )} = \sqrt{6711.2538}  $
    • $\mbox{Straight-line-distance} =81.9222 \approx 81.9 $

References:

  • $ $

Final 10 - Falling Water


Given:

  • $\mbox{Water is flowing down a wall of 1.5 meters and reaches a velocity of 4 meters/second at the bottom.} $

Question:

  • $\mbox{What is the work done by friction of a 1 gram water drop to retard its falling freely?} $

Rationale:

  • $V^2_{water-at-bottom} = 2 a_{retarded-from-normal-g} {height} $
    • $a_{retarded-from-normal-g} = \dfrac{V^2_{water-at-bottom}}{(2 height)}   $
  • $a_{friction} = g - a_{retarded-from-normal-g}  $
  • $W_{friction} = (m) (a_{friction}) {(height)}   $

Calculate:

  • $a_{retarded-from-normal-g} = \dfrac{(4)^2}{(2 * 1.5)} = 5.33333 $
  • $a_{friction} = 10 - 5.33333 = 4.66667 $
  • $ W_{friction} =  (1 * 10^{-3})(4.66667)(1.5) = 7 * 10^{-3} = .007 $

References:

  • $ $

Final 9 - Strange Planet


Given:

  • $\mbox{Length of pendulum is 12 meters and it took 45 seconds for it to swing back and forth.} $

Question:

  • $\mbox{What is the force of gravity on this planet?} $

Rationale:

  • $T = 2 \pi \sqrt{\dfrac{l}{g}} $

Calculate:

  • $\dfrac{45}{10} = (2) \dfrac{22}{7} \sqrt{\dfrac{12}{g}} $
    • $  (4.5) \dfrac{7}{44} = \sqrt{\dfrac{12}{g}} $
    • $ 0.71590 = \sqrt{\dfrac{12}{g}} $
    • $ 0.51251281 = \dfrac{12}{g}  $
    • $ g = \dfrac{12}{ 0.51251281} = 23.4140489 \approx 23.4 $

References:

  • $ $

Final 8 - Cable Car Power


Given:

  • $ \mbox{A 2,000 kg cable car on an alpha 10 degree slope.} $

Question:

  • $\mbox{How much power does it take to move the trolley at 25 km/hour?} $

Rationale:

  • $25 \dfrac{km}{hour} = 25 \dfrac{1000 \mbox{meters-per-km}}{3600 \mbox{seconds-per-hour}} $
    •  $25 \dfrac{km}{hour} =6.944444 \; \mbox{meters per second} $
  • $ P = F_{parallel} V = m g \sin\alpha V$

Calculate:

  • $P = (2000) (10) (.173648178) (6.9444) = 24,117.648146 $
    •  $ P = \approx 24,117 $

References:

  • $ $

Final 7 - Positive Latitude


Given:

  • $\mbox{A 1 m rod casts a 1 m shadow at noon on the summer solstice.} $
  • $ \mbox{At the equator, the sun's rays strike the earth vertically at 23.5 degrees north.}$

Question:

  • $\mbox{What is the latitude at the measurement point?}$

Rationale:

  • $\mbox{The triangle with 1 m on both sides is a 45 degree triangle.}$
  • $\mbox{90 - The angle at the measurement point} + \mbox{The angle at the equator} = latitude$

Calculate:

  • $ latitude = 45 + 23.5 = 68.5 $

References:

Final 6 - Balloon Balance


Given:

  • $\mbox{In an electrical field of 10,000 N/C, a mass of 30 grams is charged.} $

Question:

  • $\mbox{How large must that charge be to suspend the mass neither moving up nor down?} $

Rationale:

  • $F_{gravity} = F{electrical} $
    • $m a = E q   $
    • $q = \dfrac{m a}{E}   $

Calculate:

  • $q = \dfrac{(30 * 10^{-3}) (10)}{10^4} = 3 * 10^{-5} $

References:

  • $ $

Final 5 - Trolley


Given:

  • $\mbox{A 1,000 kg trollley on a slope of 10 degrees.} $

Question:

  • $\mbox{What force is needed to cause the trolley remain stationary ?} $

Rationale:

  • $ F_{parallel} = m g \sin\alpha $

Calculate:

  • $ F_{parallel} = (1000) (10) \sin{10_{circ}} = (1000) (10) (.173648) $
  • $ F_{parallel} = 1,736.48 \; \approx \; 1,736.5 $

References:

  • $ $

Final 4 - Climbing Stairs


Given:

  • $\mbox{A 65 kg person climbs some 6 meter stairs.}$

Question:

  • $\mbox{How much work is done?} $

Rationale:

  • $ W = m g h $

Calculate:

  • $ W =  (65) (10) (6) = 3,900 \; \mbox{joules} $

References:

  • $ $

Final 3 - Reducing the Period


Given:

  • $\mbox{Mass m attached to a spring with spring constant K.} $

Question:

  • $\mbox{What size mass should you attach to the spring to double the period of oscillation?} $

Rationale:

  • $ T_{period} = 2 \pi \sqrt{\dfrac{m}{k}}$
    • $ 2 T_{period} = 2 \pi 2 \sqrt{\dfrac{m}{k}}$
    • $ 2 T_{period} = 2 \pi \sqrt{\dfrac{4 m}{k}}$

Calculate:

  • $ \mbox{Answer is it takes 4m to double the period.} $

References:

  • $ $

Final 2 - Height of the Church


Given:

  • $\mbox{Observer #1 is at ground level} $
    • $\mbox{Sees the top of  head of Observer #2 and top of church in line.}   $
  • $\mbox{Observer #2} = 1 \; \mbox{meter tall}   $
    • $\mbox{Meters from Observer #1} = 2   $
    • $ \mbox{Meters from church} = 90  $

Question:

  • $\mbox{How tall is the church?} $

Rationale:

  • $\mbox{We have two similar triangles one within the other.} $
    • $ \mbox{A small one: 1 meters vertical by  2 meters horizontal describing an angle} = \theta   $
    • $ \mbox{A large one: the height of church vertical by 92 meters horizontal  describing an angle} = \theta $
  • $ \dfrac{vertical_{small}}{horizontal_{small}} = \tan\theta   $
  • $ \dfrac{vertical_{church}}{horizontal_{church}} = \tan\theta $

Calculate:

  • $\tan\theta = \dfrac{1}{2} \; \mbox{using the small triangle} $
  • $ \dfrac{vertical_{church}}{horizontal_{church}} = \tan\theta $
    • $\dfrac{vertical_{church}}{92} = \tan\theta = 0.5   $
    • $ vertical_{church} = 0.5 * 92 = 46 \; \mbox{meters}   $

References:

Rosa's Summary of Class Formulae

for uniform motion (a=0):
  • v=v0 and
  • Δs=v0×Δt
for uniformly accelerated motion (a=constant0):
  • v=v0+aΔt,
  • Δs=v0×Δt+12a×Δt2 and
  • v2=v20+2×a×Δs
for the gravitational force (weight - always in the vertical down direction):
  • P=m×g
for the elastic force (always opposite elastic displacement):
  • Felas=kΔx, k is the elastic constant
for the electric force (attractive for opposite sign charges and repulsive for equal sign charges):
  • Fe=keq1q2r2, ke is the electric constant
for the second law of Newton, in the x direction (for example):
  • Funbalanced,x=m×ax
for work done by a constant force (careful, Fparallel may be negative and its the force component in the displacement direction):
  • W=Fparallel×displacement
for average power:
  • P=WΔt
for instantaneous power
  • P=F⃗ v⃗ 
for the conservation of energy:
  • Etotalinitial=Etotalfinal
for the kinetic, potential and total energy:
  • K=12mv2
  • Ugravitacional,approximate=mgh
  • Ugravitacional,exact=Gm.Mr
  • Uelast=12kΔx2
  • Uelectric=keq1q2r1,2+keq1q3r1,3+keq2q3r2,3+...
  • Etotal=K+Ugravitacional+Uelast+Uelectric
for simple harmonic oscilation:
  • a=ω2x
  • ω=2πT=ΔθΔt
  • pendulum: ω2=km
  • spring-mass: ω2=gl
for the gravitic field created by a mass M, acting on a mass m:
  • g=GMr2
  • weight=FG=m×g
for the elecric field E acting on a charge q:
Fe=q×E