- Sources
- $\epsilon_0 \approx 8.854187817620... 10^{-12} $
- Source = Wikipedia
- $\mbox{Used in Coulomb's Law defining the electrostatic force}$
- $F_c = \left(\dfrac{1}{4 \pi \epsilon_0}\right) \left(\dfrac{q_1 q_2}{r^2}\right)$
- $\epsilon_0 \mbox{is defined by:}$
- $\epsilon_0 = \dfrac{1}{\mu_0 c^2} $
- $\mu_0 = 4 \pi 10^{-7} \approx 1.2566370614... 10^{-6}$
- Source = Wikipedia
- In electromagnetism, permeability is the measure of the ability of a material to support the formation of a magnetic field within itself.
- $\mbox{Gravitational constant} \; G = 6.67384 10^{-11} $
- Source = Wikipedia
- According to the law of universal gravitation, the attractive force (F) between two bodies is proportional to the product of their masses (m1 and m2), and inversely proportional to the square of the distance, r, (inverse-square law) between them:
- $F_g = G \dfrac{m_1 m_2}{r^2} $
I am taking the basic physics class thru Udacity. This blog is my scratch pad and results as I work my way thru the class. In addition, I am refreshing myself on basic calculus
Wednesday, September 5, 2012
Significant Physics Constants
Tuesday, August 7, 2012
Final 17 - Springs and Tables
Given:
- $\mbox{A 1 kg mass is connected to a spring with a constant of 350 newtons/meter.} $
- $\mbox{The spring is compressed 25 centimeters and let go from 2 meters.}$
Question:
- $\mbox{How far away will the mass impact the floor?} $
Rationale:
- $PE_{spring} = KE_{mass} $
- $.5 K x^2 = .5 m V_x^2 $
- $V_x^2 = \dfrac{(.5 * K * x^2 )}{(.5 * m)}$
- $t_y^2 = \dfrac{2 * \Delta{y}}{g} $
- $t_y = t_x $
- $\Delta{x} = V_x * t_x $
- $\Delta{x} = \sqrt{\dfrac{(.5 * K * x^2 )}{(.5 * m)}} * \sqrt{\dfrac{2 * \Delta{y}}{g}} $
Calculate:
- $\Delta{x} = \sqrt{\dfrac{(.5 * 350 * .25^2 )}{(.5 * 1)}} * \sqrt{\dfrac{2 * 2}{10}} $
- $\Delta_{x} = \sqrt{10.9375 * .5} * \sqrt{.4} = 4.6770717 * .632455 = 2.9580374$
- $\Delta_{x} \approx 2.96 \; \mbox{meters}$
References:
- $ $
Final 15 - Gravity and Electricy
Given:
- $\mbox{A mass of 8 kg and a charge of 0.1 coulombs}$
- $\mbox{Is dropped from a height of 1.2 meters}$
- $\mbox{In the continuing presence of an electric field of 100 newtons/coulomb.} $
Question:
- $\mbox{What distance d does the mass hit the floor?} $
Rationale:
- $\Delta{y} = 0.5 g t^2 $
- $ t^2 = \dfrac{2 \Delta{y} }{g} $
- $F_{electric} = F_x = m a_x $
- $E q = m a_x $
- $a_x = \dfrac{(E q)}{m} $
- $t_y^2 = t_x^2 $
- $\Delta{x} = .5 (\dfrac{(E q)}{m}) \dfrac{2 \Delta{y} }{g} $
Calculate:
- $\Delta{x} = .5 (\dfrac{(100 * .1)}{8}) \dfrac{2 * 1.2 }{10} = 0.15 \; \mbox{meters}$
References:
- $ $
Final 14 - Pushing A Car
Given:
- $\mbox{A car is being pushed by three equal force with one on each side at 30 degrees and one in the rear.} $
- $\mbox{The 1000 kg car is being accelerated at 0.5 m/s/s by the efforts of these three.} $
Question:
- $\mbox{What force are each exerting on the car?} $
Rationale:
- $F = F_1 = F_2 = F_3 $
- $F_y = F \cos\alpha \; \mbox{(and there are two of these forces)} $
- $F_{total} = F + (2 F \cos\alpha) $
- $F_{car} = m a = F + (2 F \cos\alpha) $
- $ F (1+(2 \sin\alpha) = m a $
- $ F = \dfrac{( m a)}{(1+(2 \cos\alpha)} $
Calculate:
- $F = \dfrac{(100 * .5)}{(1 + (2 * .866025)} = \dfrac{500}{2.73205} = 183.012756 \approx 183$
References:
- $ $
Final 13 - Double Inclined Plane
Given:
- $\mbox{Two masses connected by a rope and pully} $
- $\mbox{mass 1 is on a plane inclined at an angle alpha} $
- $\mbox{mass 2 is on a plane inclined at an angle beta} $
- $a = g \frac{M_{unknown}\sin{\beta} {(operator)} M_{unknown}\sin{\alpha}}{M_1 ({operator}) M_2} $
Question:
- $What are subscripts and operators? $
Rationale:
- $M_1 \; \mbox{is associated with angle alpha} $
- $M_2 \; \mbox{is associated with angle beta} $
- $a = g \frac{M_2 \sin{\beta} {(operator)} M_1 \sin{\alpha}}{M_1 ({operator}) M_2} $
- $\mbox{The denominator operator cannot be multiply or divide}$
- $\mbox{Since if either mass is zero, then the equation would be indeterminate} $
- $\mbox{So the operator must be + or - }$
- $\mbox{But it cannot be minus, since it would indeterminate is the masses are equal}$
- $\mbox{Therefore the denominator operator is plus.}$
- $\mbox{If the masses are equal and the angles are equal, }$
- $\mbox{Then the numerator must be zero}$
- $\mbox{Thus the numerator operator must be minus.}$
Calculate:
- $ $
References:
- $ $
Final 12 - Water Clock
Given:
- $\mbox{In one time interval, a ball rolls down the incline 0.8 meters.} $
Question:
- $\mbox{What interval does the ball travel in the second and third time intervals?} $
Rationale & Calculate:
- $\Delta{x} \varpropto t^2 $
- $\Delta{x-1} = 1 * K $
- $\Delta{x-2} = 4 * K$
- $\Delta{x-3} = 9 * K $
- $ K = 0.8 \; \mbox{since at t-1, x-1 is 0.8} $
- $\Delta{x-2} = 3.2 $
- $\Delta{x-3} = 7.2 $
- $ Interval_{2-1} = 3.2 - 0.8 = 2.4 $
- $ Interval_{3-2} = 7.2 - 3.2 = 4.0 $
References:
Final 11 - Dead Reckoning
Given:
- $\mbox{A ship travels:}$
- $\mbox{East at 12 km/hour for 2 hours} $
- $\mbox{Then south at 20 km/hour for 1 hour}$
- $\mbox{Then east at 15 km/hour for 3 hours}$
- $\mbox{Then northeast into port at 8 km/hour for 1 hour.} $
Question:
- $\mbox{What is the straight line distance traveled to port ? }$
Rationale:
- $\mbox{Segment-distance} = velocity * time $
- $East_{distance} = \Delta{x} $
- $South_{distance} = \Delta{y} $
- $-\Delta{y_{northeast} = \Delta{x_{northeast}} = \sin{45^{\circ}}} * Northeast_{distance} $
- $\mbox{Straight-line-distance} = \sqrt{(\Delta_{x-total})^2 + (\Delta_{y-total})^2 } $
Calculate:
- $East_{distance} = ((12) (2.5)) + ((15) (3)) = 75 $
- $South_{distance} = (20) (1) = 20 $
- $ -\Delta{y_{northeast}} = \Delta{x_{northeast}} = (0.707106781) (8) (1) = 5.656854 $
- $\Delta_{x} = 75 + 5.656854 = 80.656854 $
- $\Delta_{y} = 20 - 5.656854 = 14.343146 $
- $\mbox{Straight-line-distance} = \sqrt{(80.656854)^2 + (14.343146)^2} $
- $\mbox{Straight-line-distance} = \sqrt{(6505.5280 + 205.7258 )} = \sqrt{6711.2538} $
- $\mbox{Straight-line-distance} =81.9222 \approx 81.9 $
References:
- $ $
Final 10 - Falling Water
Given:
- $\mbox{Water is flowing down a wall of 1.5 meters and reaches a velocity of 4 meters/second at the bottom.} $
Question:
- $\mbox{What is the work done by friction of a 1 gram water drop to retard its falling freely?} $
Rationale:
- $V^2_{water-at-bottom} = 2 a_{retarded-from-normal-g} {height} $
- $a_{retarded-from-normal-g} = \dfrac{V^2_{water-at-bottom}}{(2 height)} $
- $a_{friction} = g - a_{retarded-from-normal-g} $
- $W_{friction} = (m) (a_{friction}) {(height)} $
Calculate:
- $a_{retarded-from-normal-g} = \dfrac{(4)^2}{(2 * 1.5)} = 5.33333 $
- $a_{friction} = 10 - 5.33333 = 4.66667 $
- $ W_{friction} = (1 * 10^{-3})(4.66667)(1.5) = 7 * 10^{-3} = .007 $
References:
- $ $
Final 9 - Strange Planet
Given:
- $\mbox{Length of pendulum is 12 meters and it took 45 seconds for it to swing back and forth.} $
Question:
- $\mbox{What is the force of gravity on this planet?} $
Rationale:
- $T = 2 \pi \sqrt{\dfrac{l}{g}} $
Calculate:
- $\dfrac{45}{10} = (2) \dfrac{22}{7} \sqrt{\dfrac{12}{g}} $
- $ (4.5) \dfrac{7}{44} = \sqrt{\dfrac{12}{g}} $
- $ 0.71590 = \sqrt{\dfrac{12}{g}} $
- $ 0.51251281 = \dfrac{12}{g} $
- $ g = \dfrac{12}{ 0.51251281} = 23.4140489 \approx 23.4 $
References:
- $ $
Final 8 - Cable Car Power
Given:
- $ \mbox{A 2,000 kg cable car on an alpha 10 degree slope.} $
Question:
- $\mbox{How much power does it take to move the trolley at 25 km/hour?} $
Rationale:
- $25 \dfrac{km}{hour} = 25 \dfrac{1000 \mbox{meters-per-km}}{3600 \mbox{seconds-per-hour}} $
- $25 \dfrac{km}{hour} =6.944444 \; \mbox{meters per second} $
- $ P = F_{parallel} V = m g \sin\alpha V$
Calculate:
- $P = (2000) (10) (.173648178) (6.9444) = 24,117.648146 $
- $ P = \approx 24,117 $
References:
- $ $
Final 7 - Positive Latitude
Given:
- $\mbox{A 1 m rod casts a 1 m shadow at noon on the summer solstice.} $
- $ \mbox{At the equator, the sun's rays strike the earth vertically at 23.5 degrees north.}$
Question:
- $\mbox{What is the latitude at the measurement point?}$
Rationale:
- $\mbox{The triangle with 1 m on both sides is a 45 degree triangle.}$
- $\mbox{90 - The angle at the measurement point} + \mbox{The angle at the equator} = latitude$
Calculate:
- $ latitude = 45 + 23.5 = 68.5 $
References:
Final 6 - Balloon Balance
Given:
- $\mbox{In an electrical field of 10,000 N/C, a mass of 30 grams is charged.} $
Question:
- $\mbox{How large must that charge be to suspend the mass neither moving up nor down?} $
Rationale:
- $F_{gravity} = F{electrical} $
- $m a = E q $
- $q = \dfrac{m a}{E} $
Calculate:
- $q = \dfrac{(30 * 10^{-3}) (10)}{10^4} = 3 * 10^{-5} $
References:
- $ $
Final 5 - Trolley
Given:
- $\mbox{A 1,000 kg trollley on a slope of 10 degrees.} $
Question:
- $\mbox{What force is needed to cause the trolley remain stationary ?} $
Rationale:
- $ F_{parallel} = m g \sin\alpha $
Calculate:
- $ F_{parallel} = (1000) (10) \sin{10_{circ}} = (1000) (10) (.173648) $
- $ F_{parallel} = 1,736.48 \; \approx \; 1,736.5 $
References:
- $ $
Final 4 - Climbing Stairs
Given:
- $\mbox{A 65 kg person climbs some 6 meter stairs.}$
Question:
- $\mbox{How much work is done?} $
Rationale:
- $ W = m g h $
Calculate:
- $ W = (65) (10) (6) = 3,900 \; \mbox{joules} $
References:
- $ $
Final 3 - Reducing the Period
Given:
- $\mbox{Mass m attached to a spring with spring constant K.} $
Question:
- $\mbox{What size mass should you attach to the spring to double the period of oscillation?} $
Rationale:
- $ T_{period} = 2 \pi \sqrt{\dfrac{m}{k}}$
- $ 2 T_{period} = 2 \pi 2 \sqrt{\dfrac{m}{k}}$
- $ 2 T_{period} = 2 \pi \sqrt{\dfrac{4 m}{k}}$
Calculate:
- $ \mbox{Answer is it takes 4m to double the period.} $
References:
- $ $
Final 2 - Height of the Church
Given:
- $\mbox{Observer #1 is at ground level} $
- $\mbox{Sees the top of head of Observer #2 and top of church in line.} $
- $\mbox{Observer #2} = 1 \; \mbox{meter tall} $
- $\mbox{Meters from Observer #1} = 2 $
- $ \mbox{Meters from church} = 90 $
Question:
- $\mbox{How tall is the church?} $
Rationale:
- $\mbox{We have two similar triangles one within the other.} $
- $ \mbox{A small one: 1 meters vertical by 2 meters horizontal describing an angle} = \theta $
- $ \mbox{A large one: the height of church vertical by 92 meters horizontal describing an angle} = \theta $
- $ \dfrac{vertical_{small}}{horizontal_{small}} = \tan\theta $
- $ \dfrac{vertical_{church}}{horizontal_{church}} = \tan\theta $
Calculate:
- $\tan\theta = \dfrac{1}{2} \; \mbox{using the small triangle} $
- $ \dfrac{vertical_{church}}{horizontal_{church}} = \tan\theta $
- $\dfrac{vertical_{church}}{92} = \tan\theta = 0.5 $
- $ vertical_{church} = 0.5 * 92 = 46 \; \mbox{meters} $
References:
Rosa's Summary of Class Formulae
for uniform motion (a=0):
a=constant≠0 ):
Fparallel may be negative and its the force component in the displacement direction):
Fe=q×E
-
v=v0 and
-
Δs=v0×Δt
-
v=v0+aΔt ,
-
Δs=v0×Δt+12a×Δt2 and
-
v2=v20+2×a×Δs
P=m×g
Felas=−kΔx , k is the elastic constant
Fe=keq1q2r2 ,ke is the electric constant
Funbalanced,x=m×ax
W=Fparallel×displacement
P=WΔt
P=F⃗ ⋅v⃗
Etotalinitial=Etotalfinal
-
K=12mv2
-
Ugravitacional,approximate=mgh
-
Ugravitacional,exact=−Gm.Mr
-
Uelast=12kΔx2
-
Uelectric=keq1q2r1,2+keq1q3r1,3+keq2q3r2,3+...
-
Etotal=K+Ugravitacional+Uelast+Uelectric
-
a=−ω2x
-
ω=2πT=ΔθΔt
-
pendulum:
ω2=km
-
spring-mass:
ω2=gl
-
g=GMr2
-
weight=FG=m×g
Subscribe to:
Posts (Atom)