Processing math: 0%

Tuesday, August 7, 2012

Final 17 - Springs and Tables


Given:

  • \mbox{A 1 kg mass is connected to a spring with a constant of 350 newtons/meter.}
  • \mbox{The spring is compressed 25 centimeters and let go from 2 meters.}

Question:

  • \mbox{How far away will the mass impact the floor?}

Rationale:

  • PE_{spring} = KE_{mass}
    • .5 K x^2 = .5 m V_x^2    
    • V_x^2 = \dfrac{(.5 * K * x^2 )}{(.5 * m)}
  • t_y^2 = \dfrac{2 * \Delta{y}}{g}  
  • t_y  = t_x
  • \Delta{x} = V_x * t_x
    • \Delta{x} = \sqrt{\dfrac{(.5 * K * x^2 )}{(.5 * m)}} *  \sqrt{\dfrac{2 * \Delta{y}}{g}}   

Calculate:

  • \Delta{x} = \sqrt{\dfrac{(.5 * 350 * .25^2 )}{(.5 * 1)}} *  \sqrt{\dfrac{2 * 2}{10}}     
    • \Delta_{x} = \sqrt{10.9375 * .5} *  \sqrt{.4} = 4.6770717 * .632455 = 2.9580374 
    • \Delta_{x} \approx 2.96 \; \mbox{meters}

References:

Final 16 - Bikes and Buses


Final 15 - Gravity and Electricy


Given:

  • \mbox{A mass of 8 kg and a charge of 0.1 coulombs}
    • \mbox{Is dropped from a height of 1.2 meters}
    • \mbox{In the continuing presence of an  electric field of 100 newtons/coulomb.}

Question:

  • \mbox{What distance d does the mass hit the floor?}

Rationale:

  • \Delta{y} = 0.5 g t^2
    • t^2 = \dfrac{2 \Delta{y} }{g}
  • F_{electric} = F_x = m a_x
    • E q =  m a_x
    • a_x = \dfrac{(E q)}{m}
  • t_y^2 = t_x^2
  • \Delta{x} = .5 (\dfrac{(E q)}{m})  \dfrac{2 \Delta{y} }{g}

Calculate:

  • \Delta{x} = .5 (\dfrac{(100 * .1)}{8})  \dfrac{2 * 1.2 }{10} = 0.15 \; \mbox{meters} 

References:

Final 14 - Pushing A Car


Given:

  • \mbox{A car is being pushed by three equal force with one on each side at 30 degrees and one in the rear.}
  • \mbox{The 1000 kg car is being accelerated at 0.5 m/s/s by  the efforts of these three.}  

Question:

  • \mbox{What force are each exerting on the car?}

Rationale:

  • F = F_1 = F_2 = F_3
  • F_y = F \cos\alpha \; \mbox{(and there are two of these forces)}
    • F_{total} = F + (2 F \cos\alpha)  
  • F_{car} = m a = F + (2 F \cos\alpha)  
  • F (1+(2 \sin\alpha) = m a
  • F = \dfrac{( m a)}{(1+(2 \cos\alpha)}

Calculate:

  • F = \dfrac{(100 * .5)}{(1 + (2 * .866025)} = \dfrac{500}{2.73205} = 183.012756 \approx 183

References:

Final 13 - Double Inclined Plane


Given:

  • \mbox{Two masses connected by a rope and pully}
    • \mbox{mass 1 is on a plane inclined at an angle alpha}
    • \mbox{mass 2 is on a plane inclined at an angle beta}
  • a = g \frac{M_{unknown}\sin{\beta}  {(operator)}  M_{unknown}\sin{\alpha}}{M_1 ({operator}) M_2}  

Question:

  • What are subscripts and operators?

Rationale:

  • M_1 \; \mbox{is associated with angle alpha}
  • M_2 \; \mbox{is associated with angle beta}
    • a = g \frac{M_2 \sin{\beta}  {(operator)}  M_1 \sin{\alpha}}{M_1 ({operator}) M_2}  
  • \mbox{The denominator operator cannot be multiply or divide}
    • \mbox{Since if either mass is zero, then the equation  would be indeterminate}  
    • \mbox{So the operator must be + or - }
      • \mbox{But it cannot be minus,  since it would indeterminate is the masses are equal}
      • \mbox{Therefore the denominator operator is plus.}
  • \mbox{If the masses are equal and the angles are equal, }
    • \mbox{Then the numerator must be zero}
    • \mbox{Thus the numerator operator must be minus.}

Calculate:

References:

Final 12 - Water Clock


Given:

  • \mbox{In one time interval, a ball rolls down the incline 0.8 meters.}

Question:

  • \mbox{What interval does the ball travel in the second and third time intervals?}

Rationale & Calculate:

  • \Delta{x} \varpropto t^2
    • \Delta{x-1} = 1 * K
    • \Delta{x-2} = 4 * K 
    • \Delta{x-3} = 9 * K  
  • K = 0.8 \; \mbox{since at t-1, x-1 is 0.8}
    • \Delta{x-2} = 3.2  
    • \Delta{x-3} = 7.2  
  • Interval_{2-1} = 3.2 - 0.8 = 2.4
  • Interval_{3-2} = 7.2 - 3.2 = 4.0

References:

Final 11 - Dead Reckoning


Given:

  • \mbox{A ship travels:}
    • \mbox{East at 12 km/hour for 2 hours}
    • \mbox{Then south at 20 km/hour for 1 hour}
    • \mbox{Then east at 15 km/hour for 3 hours}
    • \mbox{Then northeast into port at 8 km/hour for 1 hour.}

Question:

  • \mbox{What is the straight line distance traveled to port ? }

Rationale:

  • \mbox{Segment-distance}  = velocity * time
  • East_{distance} = \Delta{x}
  • South_{distance} = \Delta{y}
  • -\Delta{y_{northeast} = \Delta{x_{northeast}} = \sin{45^{\circ}}} * Northeast_{distance}
  • \mbox{Straight-line-distance} = \sqrt{(\Delta_{x-total})^2 + (\Delta_{y-total})^2 }

Calculate:

  • East_{distance} = ((12) (2.5)) + ((15) (3)) =  75
  • South_{distance} = (20) (1) = 20
  • -\Delta{y_{northeast}}  = \Delta{x_{northeast}} = (0.707106781) (8) (1) = 5.656854
  • \Delta_{x} = 75 +  5.656854 = 80.656854
  • \Delta_{y} = 20 - 5.656854 = 14.343146
  • \mbox{Straight-line-distance} = \sqrt{(80.656854)^2 + (14.343146)^2}
    • \mbox{Straight-line-distance} = \sqrt{(6505.5280 + 205.7258 )} = \sqrt{6711.2538} 
    • \mbox{Straight-line-distance} =81.9222 \approx 81.9

References:

Final 10 - Falling Water


Given:

  • \mbox{Water is flowing down a wall of 1.5 meters and reaches a velocity of 4 meters/second at the bottom.}

Question:

  • \mbox{What is the work done by friction of a 1 gram water drop to retard its falling freely?}

Rationale:

  • V^2_{water-at-bottom} = 2 a_{retarded-from-normal-g} {height}
    • a_{retarded-from-normal-g} = \dfrac{V^2_{water-at-bottom}}{(2 height)}  
  • a_{friction} = g - a_{retarded-from-normal-g} 
  • W_{friction} = (m) (a_{friction}) {(height)}  

Calculate:

  • a_{retarded-from-normal-g} = \dfrac{(4)^2}{(2 * 1.5)} = 5.33333
  • a_{friction} = 10 - 5.33333 = 4.66667
  • W_{friction} =  (1 * 10^{-3})(4.66667)(1.5) = 7 * 10^{-3} = .007

References:

Final 9 - Strange Planet


Given:

  • \mbox{Length of pendulum is 12 meters and it took 45 seconds for it to swing back and forth.}

Question:

  • \mbox{What is the force of gravity on this planet?}

Rationale:

  • T = 2 \pi \sqrt{\dfrac{l}{g}}

Calculate:

  • \dfrac{45}{10} = (2) \dfrac{22}{7} \sqrt{\dfrac{12}{g}}
    •   (4.5) \dfrac{7}{44} = \sqrt{\dfrac{12}{g}}
    • 0.71590 = \sqrt{\dfrac{12}{g}}
    • 0.51251281 = \dfrac{12}{g} 
    • g = \dfrac{12}{ 0.51251281} = 23.4140489 \approx 23.4

References:

Final 8 - Cable Car Power


Given:

  • \mbox{A 2,000 kg cable car on an alpha 10 degree slope.}

Question:

  • \mbox{How much power does it take to move the trolley at 25 km/hour?}

Rationale:

  • 25 \dfrac{km}{hour} = 25 \dfrac{1000 \mbox{meters-per-km}}{3600 \mbox{seconds-per-hour}}
    •  25 \dfrac{km}{hour} =6.944444 \; \mbox{meters per second}
  • P = F_{parallel} V = m g \sin\alpha V

Calculate:

  • P = (2000) (10) (.173648178) (6.9444) = 24,117.648146
    •   P = \approx 24,117

References:

Final 7 - Positive Latitude


Given:

  • \mbox{A 1 m rod casts a 1 m shadow at noon on the summer solstice.}
  • \mbox{At the equator, the sun's rays strike the earth vertically at 23.5 degrees north.}

Question:

  • \mbox{What is the latitude at the measurement point?}

Rationale:

  • \mbox{The triangle with 1 m on both sides is a 45 degree triangle.}
  • \mbox{90 - The angle at the measurement point} + \mbox{The angle at the equator} = latitude

Calculate:

  • latitude = 45 + 23.5 = 68.5

References:

Final 6 - Balloon Balance


Given:

  • \mbox{In an electrical field of 10,000 N/C, a mass of 30 grams is charged.}

Question:

  • \mbox{How large must that charge be to suspend the mass neither moving up nor down?}

Rationale:

  • F_{gravity} = F{electrical}
    • m a = E q  
    • q = \dfrac{m a}{E}  

Calculate:

  • q = \dfrac{(30 * 10^{-3}) (10)}{10^4} = 3 * 10^{-5}

References:

Final 5 - Trolley


Given:

  • \mbox{A 1,000 kg trollley on a slope of 10 degrees.}

Question:

  • \mbox{What force is needed to cause the trolley remain stationary ?}

Rationale:

  • F_{parallel} = m g \sin\alpha

Calculate:

  • F_{parallel} = (1000) (10) \sin{10_{circ}} = (1000) (10) (.173648)
  • F_{parallel} = 1,736.48 \; \approx \; 1,736.5

References:

Final 4 - Climbing Stairs


Given:

  • \mbox{A 65 kg person climbs some 6 meter stairs.}

Question:

  • \mbox{How much work is done?}

Rationale:

  • W = m g h

Calculate:

  • W =  (65) (10) (6) = 3,900 \; \mbox{joules}

References:

Final 3 - Reducing the Period


Given:

  • \mbox{Mass m attached to a spring with spring constant K.}

Question:

  • \mbox{What size mass should you attach to the spring to double the period of oscillation?}

Rationale:

  • T_{period} = 2 \pi \sqrt{\dfrac{m}{k}}
    • 2 T_{period} = 2 \pi 2 \sqrt{\dfrac{m}{k}}
    • 2 T_{period} = 2 \pi \sqrt{\dfrac{4 m}{k}}

Calculate:

  • \mbox{Answer is it takes 4m to double the period.}

References:

Final 2 - Height of the Church


Given:

  • \mbox{Observer #1 is at ground level}
    • \mbox{Sees the top of  head of Observer #2 and top of church in line.}  
  • \mbox{Observer #2} = 1 \; \mbox{meter tall}  
    • \mbox{Meters from Observer #1} = 2  
    • \mbox{Meters from church} = 90 

Question:

  • \mbox{How tall is the church?}

Rationale:

  • \mbox{We have two similar triangles one within the other.}
    • \mbox{A small one: 1 meters vertical by  2 meters horizontal describing an angle} = \theta  
    • \mbox{A large one: the height of church vertical by 92 meters horizontal  describing an angle} = \theta
  • \dfrac{vertical_{small}}{horizontal_{small}} = \tan\theta  
  • \dfrac{vertical_{church}}{horizontal_{church}} = \tan\theta

Calculate:

  • \tan\theta = \dfrac{1}{2} \; \mbox{using the small triangle}
  • \dfrac{vertical_{church}}{horizontal_{church}} = \tan\theta
    • \dfrac{vertical_{church}}{92} = \tan\theta = 0.5  
    • vertical_{church} = 0.5 * 92 = 46 \; \mbox{meters}  

References:

Rosa's Summary of Class Formulae

for uniform motion (a=0):
  • v=v0 and
  • Δs=v0×Δt
for uniformly accelerated motion (a=constant0):
  • v=v0+aΔt,
  • Δs=v0×Δt+12a×Δt2 and
  • v2=v20+2×a×Δs
for the gravitational force (weight - always in the vertical down direction):
  • P=m×g
for the elastic force (always opposite elastic displacement):
  • Felas=kΔx, k is the elastic constant
for the electric force (attractive for opposite sign charges and repulsive for equal sign charges):
  • Fe=keq1q2r2, ke is the electric constant
for the second law of Newton, in the x direction (for example):
  • Funbalanced,x=m×ax
for work done by a constant force (careful, Fparallel may be negative and its the force component in the displacement direction):
  • W=Fparallel×displacement
for average power:
  • P=WΔt
for instantaneous power
  • P=F⃗ v⃗ 
for the conservation of energy:
  • Etotalinitial=Etotalfinal
for the kinetic, potential and total energy:
  • K=12mv2
  • Ugravitacional,approximate=mgh
  • Ugravitacional,exact=Gm.Mr
  • Uelast=12kΔx2
  • Uelectric=keq1q2r1,2+keq1q3r1,3+keq2q3r2,3+...
  • Etotal=K+Ugravitacional+Uelast+Uelectric
for simple harmonic oscilation:
  • a=ω2x
  • ω=2πT=ΔθΔt
  • pendulum: ω2=km
  • spring-mass: ω2=gl
for the gravitic field created by a mass M, acting on a mass m:
  • g=GMr2
  • weight=FG=m×g
for the elecric field E acting on a charge q:
Fe=q×E