Unit 4 - Problem 10 ==> Generalized Equations
Given:
- Acceleration of gravity = 9.8 m/s/s
- Mass of the object = 1 kilogram
- Height over ground = 50 meters
- G = 6.674 x 10^-11
- Radius of the earth = 6400 kilometers = 6,400,000 meters
- Mass of the earth = 5.97 x 10^24 kilograms
Calculate: Gravitational potential energy using mgh
- $$ E_{potential} = m * g * h = 1 * 9.8 * 6400009 = 62720088.2 $$
Calculate: Potential energy using (G*M1*M2)/r
- $$ E_{potential} = G_{earth} * M_{object} * M_{earth} $$
- $$ E_{potential} = \left(\frac{6.674^{-11} * 1 * 5.97^{24}}{6400009}\right) $$
- $$ E_{potential} = 6.225581870275496 * 10^-6 * 10^{-11} * 10^{24} $$
- $$ E_{potential} = 6.225581870275496 * 10^7 $$
- $$ E_{potential} = 62255818.70275496 $$
Calculate: Difference & % difference in two calculations
- $$ E_{mgh} - E_{GM1M2/r} = difference$$
- $$ 62720088.2 - 62255818.70275496 = 464269.4972450435 $$
- $$ \left(\frac{difference}{E_{GM1M2/r}}\right) * 100 = percent_{difference}$$
- $$ \frac{464269.4972450435}{62255818.70275496} * 100 = 0.745744746305133$$
No comments:
Post a Comment