Unit 6 - Problem 2 ==> Parallel Plates
Given:
- $$ E_{field} = 1000 $$
- $$ d = 1 \; \mbox{cm} $$
- $$ m_{proton} = 1.673 * 10^{-27} $$
- $$ q = 1.6024 * 10^{-19} $$
- $$ \mbox{Initial velocity of charge}\; = 0 $$
Question:
- $$\mbox{How long, in nanoseconds, does it take the proton to cross between the two plates?} $$
Overview of Approach:
- Convert centimeters to meters for final calculations
- Determine force on charge due to electrical field
- Determine acceleration on charge due to force on charge
- Determine time to transit using the acceleration
Rationale:
Convert centimeters to meters
- $$ 1 \; \mbox{cm} = 1 * 10^{-2} \; \mbox{meters} $$
Determine force on charge due to electrical field
Determine acceleration on charge due to force on charge
- $$ F = m * a $$
- $$ a = \frac{F}{m} $$
- $$ a_p = \frac{F_e}{m} = \frac{E * q}{m} $$
Determine time to transit using the acceleration
- $$ \Delta{x} = (V_0 * t) + (\frac{1}{2} * a * t^2) $$
- $$ t^2 = \frac{2\Delta{x}}{a} $$
- $$ t^2 = \frac{(2 * d)}{ \frac{E * q}{m}}$$
- $$ t^2 = \frac{(2 * d * m)}{(E * q)} $$
- $$ t = \sqrt \frac{(2 * d * m)}{(E * q)} $$
Calculate
- $$ t = \sqrt \frac{(2 * (10^{-2}) * ( 1.673 * 10^{-27}))}{(1000 * (1.6024 * 10^{-19} ))} $$
- $$ t = \sqrt\frac{(3.346 * 10^{-29})}{(1.6024 * 10^{-16})}$$
- $$ t = \sqrt{(2.088 * 10{-13})} $$
- $$ t = .4569 * 10^{-6} = 456.9 * 10^{-9}$$
No comments:
Post a Comment