Thursday, July 26, 2012

Unit 5 - Problem 1 ==> Keeping Time


Given:

  • $$l_e = \mbox{length of pendulum on earth}  $$
  • $$m = \mbox{mass of pendulum}$$
  • $$g_e = \mbox{acceleration of gravity on the earth}  $$
  • $$g_m = \mbox{acceleration of gravity on the moon}  $$

Rationale:

  • $$T_{period-earth} = 2 \pi \sqrt\frac{l_e}{g_e}$$
  • $$T_{period-moon} = 2 \pi \sqrt\frac{l_m}{g_m}$$
  • $$T_{period-earth} = T_{period-moon} $$
  • $$ 2 \pi \sqrt\frac{l_e}{g_e} = 2 \pi \sqrt\frac{l_m}{g_m}$$
  • $$ \frac{l_e}{g_e} = \frac{l_m}{g_m}$$
  • $$ l_m = l_e \frac{g_m}{g_e} $$

Calculate: Length of pendulum on moon

  • $$ l_m = l_e \frac{1.6}{9.8} = 0.163265  l_e = 0.16  l_e $$

No comments:

Post a Comment