Unit 5 - Problem 1 ==> Keeping Time
Given:
- $$l_e = \mbox{length of pendulum on earth} $$
- $$m = \mbox{mass of pendulum}$$
- $$g_e = \mbox{acceleration of gravity on the earth} $$
- $$g_m = \mbox{acceleration of gravity on the moon} $$
Rationale:
- $$T_{period-earth} = 2 \pi \sqrt\frac{l_e}{g_e}$$
- $$T_{period-moon} = 2 \pi \sqrt\frac{l_m}{g_m}$$
- $$T_{period-earth} = T_{period-moon} $$
- $$ 2 \pi \sqrt\frac{l_e}{g_e} = 2 \pi \sqrt\frac{l_m}{g_m}$$
- $$ \frac{l_e}{g_e} = \frac{l_m}{g_m}$$
- $$ l_m = l_e \frac{g_m}{g_e} $$
Calculate: Length of pendulum on moon
- $$ l_m = l_e \frac{1.6}{9.8} = 0.163265 l_e = 0.16 l_e $$
No comments:
Post a Comment