Processing math: 100%

Thursday, July 26, 2012

Unit 5 - Problem 8 ==> Springs In Series


Given:

  • Two springs in series with spring constants k-1 and k-2.
  • mass of m attached to spring 2.

Rationale:

  • The k of the combined springs must be less than the k of either spring
  • F_g = m g   
  • F_{spring_2}  = m g
  • \Delta{x_{total}} = \Delta{x_2} + \Delta{x_1}
  • \mbox{In general:  } \Delta{x} = \frac{F}{k}
  • \frac{m g}{k_{total}} = \frac{m g}{k_2} + \frac{m g}{k_1}
  • \frac{1}{k_{total}} =  \frac{1}{k_2} + \frac{1}{k_1}
  • \frac{1}{k_{total}} =  \frac{(k_2 + k_1)}{(k_1 * k_2)} 
  • k_{total} = \frac{(k_1 * k_2)}{(k_2 + k_1)}

Testcase: k-1 = k-2

  • k_1 = k_2
  • k_{total}  = \frac{k_1^2}{2 k_1}
  • k_{total} = \frac{k_1}{2}

Testcase: k-1 <<  k2

  • k_1 = 100
  • k_2 =  100,000
  • k_{total} = \frac{(k_1 * k_2)}{(k_2 + k_1)}
    •   k_{total} = \frac{(100 * 100000)}{(100000 + 100)}
    •   k_{total} = 99.9

Other References

No comments:

Post a Comment