Unit 5 - Problem 8 ==> Springs In Series
Given:
- Two springs in series with spring constants k-1 and k-2.
- mass of m attached to spring 2.
Rationale:
- The k of the combined springs must be less than the k of either spring
- $$ F_g = m g $$
- $$ F_{spring_2} = m g $$
- $$ \Delta{x_{total}} = \Delta{x_2} + \Delta{x_1} $$
- $$\mbox{In general: } \Delta{x} = \frac{F}{k} $$
- $$ \frac{m g}{k_{total}} = \frac{m g}{k_2} + \frac{m g}{k_1} $$
- $$ \frac{1}{k_{total}} = \frac{1}{k_2} + \frac{1}{k_1} $$
- $$ \frac{1}{k_{total}} = \frac{(k_2 + k_1)}{(k_1 * k_2)} $$
- $$ k_{total} = \frac{(k_1 * k_2)}{(k_2 + k_1)} $$
Testcase: k-1 = k-2
- $$ k_1 = k_2 $$
- $$ k_{total} = \frac{k_1^2}{2 k_1} $$
- $$ k_{total} = \frac{k_1}{2} $$
Testcase: k-1 << k2
- $$ k_1 = 100 $$
- $$ k_2 = 100,000 $$
- $$ k_{total} = \frac{(k_1 * k_2)}{(k_2 + k_1)} $$
- $$ k_{total} = \frac{(100 * 100000)}{(100000 + 100)} $$
- $$ k_{total} = 99.9 $$
Other References
No comments:
Post a Comment