Processing math: 100%

Thursday, July 26, 2012

Unit 5 - Problem 7 ==> Swing Set


Given:

  • l_{swing} = 4
  • h_{swing} = 1
  • m_{person} = 60
  • {PE}_{max}  \mbox{is at} 45^\circ   \mbox{back}
  • \mbox{Jump off is at } 30^\circ  \mbox{forward}

Overview of Approach:

  1. Consider energy available
  2. Convert PE to KE and calculating x and y vectors
  3. Calculate total time in air
  4. Calculate horizontal distance from take-off

Rationale:

  • Considering energy available
    • h_{PE_{max}} = l_{swing} \cos45^\circ
    • PE_{max} = m * g *  h_{PE_{max}} = m * g * l_{swing} \cos45^\circ
    • h_{jump} = ( l_{swing} + h_{swing} ) - ( l_{swing} \cos30^\circ )
    • PE_{jump} = m * g * h_{jump} = m * g * ( ( l_{swing} + h_{swing} ) - ( l_{swing} \cos30^\circ ))
    • PE_{take-off} = PE_{max} - PE_{jump}
  • Converting PE to KE and calculating x and y vectors
    • KE_{take-off} = PE_{take-off}
    • \frac{1}{2} m V_0^2 = PE_{take-off}
    • V_0^2 = \frac{2 PE_{take-off}}{m}
    • V_0 = \sqrt \frac{2 PE_{take-off}}{m}
    • V_{0-x} = V_0 \cos30^\circ
    • V_{0-y} = V_0 \sin30^\circ
  • Calculate total time in air
    • t_{up} = -\frac{(V - V_{0-y})}{a}
    • t_{up} = -\frac{-V_{0-y}}{g} = \frac{V_{0-y}}{g}
    • \Delta{y_{up}} = t_{up} \frac{V + V_{0-y}}{2} = t_{up} \frac{V_{0-y}}{2}
    • \Delta{y_{down}} =  \Delta{y_{up}} + h_{jump}
    • \Delta{y_{down}} = V t + \frac{1}{2} a t_{down}^2 = \frac{1}{2} g t_{down}^2
    • t_{down}^2 = \frac{2 \Delta{y_{down}}}{g}  
    • t_{down} = \sqrt \frac{2 \Delta{y_{down}}}{g}
    • t_{total} = t_{up} + t_{down}
  • Calculate horizontal distance from take-off
    • \Delta{x} = V_{0-x} * t_{total}

Calculations:

  • \cos45^\circ = .707107
  • \cos30^\circ = .866025
  • \sin30^\circ = .500000
  • \Delta{x} = 2.35  \mbox{meters}

No comments:

Post a Comment