Unit 5 - Problem 7 ==> Swing Set
Given:
- $$ l_{swing} = 4 $$
- $$ h_{swing} = 1 $$
- $$ m_{person} = 60 $$
- $$ {PE}_{max} \mbox{is at} 45^\circ \mbox{back} $$
- $$ \mbox{Jump off is at } 30^\circ \mbox{forward} $$
Overview of Approach:
- Consider energy available
- Convert PE to KE and calculating x and y vectors
- Calculate total time in air
- Calculate horizontal distance from take-off
Rationale:
- Considering energy available
- $$ h_{PE_{max}} = l_{swing} \cos45^\circ $$
- $$ PE_{max} = m * g * h_{PE_{max}} = m * g * l_{swing} \cos45^\circ $$
- $$ h_{jump} = ( l_{swing} + h_{swing} ) - ( l_{swing} \cos30^\circ ) $$
- $$ PE_{jump} = m * g * h_{jump} = m * g * ( ( l_{swing} + h_{swing} ) - ( l_{swing} \cos30^\circ )) $$
- $$ PE_{take-off} = PE_{max} - PE_{jump}$$
- Converting PE to KE and calculating x and y vectors
- $$ KE_{take-off} = PE_{take-off} $$
- $$ \frac{1}{2} m V_0^2 = PE_{take-off} $$
- $$ V_0^2 = \frac{2 PE_{take-off}}{m} $$
- $$ V_0 = \sqrt \frac{2 PE_{take-off}}{m} $$
- $$ V_{0-x} = V_0 \cos30^\circ $$
- $$ V_{0-y} = V_0 \sin30^\circ $$
- Calculate total time in air
- $$ t_{up} = -\frac{(V - V_{0-y})}{a} $$
- $$ t_{up} = -\frac{-V_{0-y}}{g} = \frac{V_{0-y}}{g}$$
- $$ \Delta{y_{up}} = t_{up} \frac{V + V_{0-y}}{2} = t_{up} \frac{V_{0-y}}{2} $$
- $$ \Delta{y_{down}} = \Delta{y_{up}} + h_{jump} $$
- $$ \Delta{y_{down}} = V t + \frac{1}{2} a t_{down}^2 = \frac{1}{2} g t_{down}^2 $$
- $$ t_{down}^2 = \frac{2 \Delta{y_{down}}}{g} $$
- $$ t_{down} = \sqrt \frac{2 \Delta{y_{down}}}{g} $$
- $$ t_{total} = t_{up} + t_{down} $$
- Calculate horizontal distance from take-off
- $$ \Delta{x} = V_{0-x} * t_{total} $$
Calculations:
- $$ \cos45^\circ = .707107 $$
- $$ \cos30^\circ = .866025 $$
- $$ \sin30^\circ = .500000 $$
- $$ \Delta{x} = 2.35 \mbox{meters} $$
No comments:
Post a Comment