Unit 5 - Problem 5 ==> Falling Thru The Earth
Given:
- $$ F_e = g m \frac{r}{r_e} $$
- $$ g = 10 $$
- $$ r_e = 6,400 \mbox{km} = 6,400,000 \mbox{meters} $$
Rationale:
- $$ F_{restoring} = k x = r \frac{g m}{r_e} $$
- $$ k = \frac{g m}{r_e} $$
- $$ \frac{1}{k} = \frac{r_e}{g m} $$
- $$ x = r $$
- $$ T_{period} = 2 \pi \sqrt{(m \frac{1}{k})} $$
- $$ T_{period} = 2 \pi \sqrt{(m \frac{r_e}{g m})} $$
- $$ T_{period} = 2 \pi \sqrt\frac{r_e}{g} $$
Calculate:
- $$ T_{period} = 2 \pi \sqrt\frac{r_e}{g} $$
- $$ T_{period} = \frac{44}{7} \sqrt\frac{6,400,000}{10} $$
- $$ T_{period} = 6.2857143 \sqrt{640,000} $$
- $$ T_{period} = 6.2857143 * 800 = 5,028.57 \mbox{seconds}$$
- $$ T_{period} =83.8 \mbox{minutes} $$
No comments:
Post a Comment