Processing math: 0%

Thursday, July 26, 2012

Unit 5 - Problem 6 ==> Block Clock


Given:

  • \mbox{mass}  = 0.5  \mbox{kg}
  • k = 100
  • \mbox{distance between springs} = 3  \mbox{meters}
  • Switch  at midpoint and need to hit every second

Rationale:

  • Ignore the width of the block
  • Sequence: 1.5 m to spring, bounce on spring, then 1.5 m back to switch -- then again on opposite side
    • V_0 t = 2 * 1.5  \mbox{meters} 
    • t = \frac{3}{V_0} 
  • Uses 0.5 of spring period
    • \frac{1}{2} T_{spring} = \frac{1}{2} (2 \pi) \sqrt\frac{m}{k} 
  • t +\frac{T}{2} = 1  \mbox{second}
    • \frac{3}{V_0} + \pi \sqrt\frac{m}{k} = 1 
    • \frac{3}{V_0}  = 1 - \pi \sqrt\frac{m}{k} 
    • V_0 = \frac{3}{( 1 - \pi \sqrt\frac{m}{k})}

Calculate:

  • V_0 =   \frac{3}{( 1 - \pi \sqrt\frac{0.5}{100})}
  • V_0 =   \frac{3}{( 1 - \pi * (.07071067811))}
  • V_0 =   \frac{3}{( 1 - 0.222 )}  
  •   V_0 =   \frac{3}{.778}
  • V_0 = 3.8560  \mbox{meters/second}

No comments:

Post a Comment