Unit 5 - Problem 6 ==> Block Clock
Given:
- $$ \mbox{mass} = 0.5 \mbox{kg} $$
- $$ k = 100 $$
- $$ \mbox{distance between springs} = 3 \mbox{meters} $$
- Switch at midpoint and need to hit every second
Rationale:
- Ignore the width of the block
- Sequence: 1.5 m to spring, bounce on spring, then 1.5 m back to switch -- then again on opposite side
- $$ V_0 t = 2 * 1.5 \mbox{meters} $$
- $$ t = \frac{3}{V_0} $$
- Uses 0.5 of spring period
- $$ \frac{1}{2} T_{spring} = \frac{1}{2} (2 \pi) \sqrt\frac{m}{k} $$
- $$ t +\frac{T}{2} = 1 \mbox{second} $$
- $$ \frac{3}{V_0} + \pi \sqrt\frac{m}{k} = 1 $$
- $$ \frac{3}{V_0} = 1 - \pi \sqrt\frac{m}{k} $$
- $$ V_0 = \frac{3}{( 1 - \pi \sqrt\frac{m}{k})} $$
Calculate:
- $$ V_0 = \frac{3}{( 1 - \pi \sqrt\frac{0.5}{100})} $$
- $$ V_0 = \frac{3}{( 1 - \pi * (.07071067811))} $$
- $$ V_0 = \frac{3}{( 1 - 0.222 )} $$
- $$ V_0 = \frac{3}{.778} $$
- $$ V_0 = 3.8560 \mbox{meters/second} $$
No comments:
Post a Comment