Monday, July 30, 2012

Unit 6 - Problem 4 ==> Cathode Ray Tube


Given:

  • $$ d = 0.5 \;\mbox{meters} $$
  • $$  V_0 = 1 * 10^7 \;\mbox{meters/second}   $$
  • $$ q = 1.602 * 10^{-19} \;\mbox{coulombs} $$
  • $$ m_e = 9.11 * 10^{-31} \;\mbox{kg} $$

Question:

  • $$\mbox{What electrical field is required to cause a displacement} = \Delta{y} \;\mbox{?} $$

Overview of Approach:

  1. Determine horizontal time
  2. Determine the vertical acceleration
  3. Determine electrical field necessary for vertical displacement
  4. Finish by substituting for the time to transit

Rationale:


Determine horizontal time

  • $$ d = V_0 * t_x $$
    • $$ t _x = \frac{d}{V_0} $$

Determine the vertical acceleration

  • $$ F_{movement}  = F_e $$
    • $$ F_{movement} = m * a $$
    • $$ F_e = E * q $$
    • $$ F_{movement} = F_e $$
    • $$ E * q = m * a $$
    • $$ a_y = \frac{(E * q)}{m} $$

Determine electrical field necessary for vertical displacement

  • $$ t_x = t_y $$

    • $$ \Delta{y} = \frac{1}{2}  * a_y * t_y^2$$
    • $$ \frac{(2 * \Delta{y})}{t_x^2} = a_y = \frac{(E * q)}{m} $$
    • $$ E = \frac{(m * 2 * \Delta{y})}{(q * t_x^2)}$$

Finish by substituting for the time to transit

    • $$ t_x^2 = \frac{d^2}{V_0^2}  $$
    • $$ E = \frac{(V_0^2 * m * 2 * \Delta{y})}{(q * d^2)} $$

    Calculate

    • $$ E = \frac{(10^{14} * 9.11 * 10^{-31} * 2 * 0.1)}{(1.602 * 10^{-19} * 0.25)}  $$
    • $$ E = \frac{(10^{-17} * 1.822)}{(10^{-19} * 0.4005)}  $$
    • $$ E = 10^2 * 4.54931 = 454.931 = 455 $$

No comments:

Post a Comment