Unit 6 - Problem 4 ==> Cathode Ray Tube
Given:
- $$ d = 0.5 \;\mbox{meters} $$
- $$ V_0 = 1 * 10^7 \;\mbox{meters/second} $$
- $$ q = 1.602 * 10^{-19} \;\mbox{coulombs} $$
- $$ m_e = 9.11 * 10^{-31} \;\mbox{kg} $$
Question:
- $$\mbox{What electrical field is required to cause a displacement} = \Delta{y} \;\mbox{?} $$
Overview of Approach:
- Determine horizontal time
- Determine the vertical acceleration
- Determine electrical field necessary for vertical displacement
- Finish by substituting for the time to transit
Rationale:
Determine horizontal time
- $$ d = V_0 * t_x $$
- $$ t _x = \frac{d}{V_0} $$
Determine the vertical acceleration
- $$ F_{movement} = F_e $$
- $$ F_{movement} = m * a $$
- $$ F_e = E * q $$
- $$ F_{movement} = F_e $$
- $$ E * q = m * a $$
- $$ a_y = \frac{(E * q)}{m} $$
Determine electrical field necessary for vertical displacement
- $$ t_x = t_y $$
- $$ \Delta{y} = \frac{1}{2} * a_y * t_y^2$$
- $$ \frac{(2 * \Delta{y})}{t_x^2} = a_y = \frac{(E * q)}{m} $$
- $$ E = \frac{(m * 2 * \Delta{y})}{(q * t_x^2)}$$
Finish by substituting for the time to transit
- $$ t_x^2 = \frac{d^2}{V_0^2} $$
- $$ E = \frac{(V_0^2 * m * 2 * \Delta{y})}{(q * d^2)} $$
Calculate
- $$ E = \frac{(10^{14} * 9.11 * 10^{-31} * 2 * 0.1)}{(1.602 * 10^{-19} * 0.25)} $$
- $$ E = \frac{(10^{-17} * 1.822)}{(10^{-19} * 0.4005)} $$
- $$ E = 10^2 * 4.54931 = 454.931 = 455 $$
No comments:
Post a Comment