Processing math: 4%

Monday, July 30, 2012

Unit 6 - Problem 4 ==> Cathode Ray Tube


Given:

  • d = 0.5 \;\mbox{meters}
  •   V_0 = 1 * 10^7 \;\mbox{meters/second}  
  • q = 1.602 * 10^{-19} \;\mbox{coulombs}
  • m_e = 9.11 * 10^{-31} \;\mbox{kg}

Question:

  • \mbox{What electrical field is required to cause a displacement} = \Delta{y} \;\mbox{?}

Overview of Approach:

  1. Determine horizontal time
  2. Determine the vertical acceleration
  3. Determine electrical field necessary for vertical displacement
  4. Finish by substituting for the time to transit

Rationale:


Determine horizontal time

  • d = V_0 * t_x
    • t _x = \frac{d}{V_0}

Determine the vertical acceleration

  • F_{movement}  = F_e
    • F_{movement} = m * a
    • F_e = E * q
    • F_{movement} = F_e
    • E * q = m * a
    • a_y = \frac{(E * q)}{m}

Determine electrical field necessary for vertical displacement

  • t_x = t_y

    • \Delta{y} = \frac{1}{2}  * a_y * t_y^2
    • \frac{(2 * \Delta{y})}{t_x^2} = a_y = \frac{(E * q)}{m}
    • E = \frac{(m * 2 * \Delta{y})}{(q * t_x^2)}

Finish by substituting for the time to transit

    • t_x^2 = \frac{d^2}{V_0^2} 
    • E = \frac{(V_0^2 * m * 2 * \Delta{y})}{(q * d^2)}

    Calculate

    • E = \frac{(10^{14} * 9.11 * 10^{-31} * 2 * 0.1)}{(1.602 * 10^{-19} * 0.25)} 
    • E = \frac{(10^{-17} * 1.822)}{(10^{-19} * 0.4005)} 
    • E = 10^2 * 4.54931 = 454.931 = 455

No comments:

Post a Comment