Processing math: 0%

Monday, July 30, 2012

Unit 6 - Problem 8 ==> Charge Detective


Given:

  • \mbox{Bottom left charge} = q
    • \mbox{Call the top charge} = q_1
    • \mbox{Call the bottom right charge} = q_2
  • 23.41^\circ = \mbox{combined force of }
  • 90^\circ \; \mbox{is combined force on q_2}
  • \mbox{The three charges make an equilateral triangle of side} = L

The Question:

  • \mbox{Using the q charge as the base, what are the relative values of the other two charges?}

Rationale: Approach using approximation

  • q_1 \; \mbox{and} q_2 \; \mbox{have the same polarity since their forces are pushing them apart.}
  • q \; \mbox{has opposite polarity to } \; q_1 \mbox{and}\; q_2 \; \mbox{since the 23.41 degree force is towards} \; q_1 \mbox{and}\; q_2
  • \mbox {If} \;  q_1 = q_2 \;\mbox{then the angle at q would be 30 degrees}
    • \frac{q_2}{q_1} \varpropto \Delta\mbox{from 30 degrees}
    • \frac{30^\circ}{60^\circ} = \frac{1}{2}
    • \frac{23.41^\circ}{60^\circ} = 0.39
    • \Delta = 0.50 - 0.39 = 0.11
    • q_2 = 1.11 * q_1
  • \mbox{Extending a line from} \; q_1 \; \mbox{thru} \; q_2  
    • \mbox{this force is the hypotunese of a right triangle with angle of }\; 30^\circ
    • \sin{30}^\circ = \frac{\frac{K * Q_2 * Q_3}{r^2}}{\frac{K * q_1 * q_2}{r^2}}   
    •   \sin{30}^\circ = \frac{q_3}{q_1}

Calculate: Using approximation approach

  • q_1 = \frac{q_3}{\sin{30}^\circ} = 2 * q_3
  • q_2 = 1.11 * q_1 = 1.11 * \frac{q_3}{\sin{30}^\circ} =  2.22 * q_3

Rationale: Approach only based on electric charges

 

Definitions

  • \alpha = \mbox{sixty degree angle due to the equilateral arrangement of the three charges}
  • \beta = \mbox{23.41 degree angle of attraction of q to the other two charges}
  • \theta = \mbox{30 degree angle pulling on the bottom right charge}

Process the forces on charge q

  • F_{1-3} = \frac{K * q_1 * q_3}{L^2}
    • \cos\alpha = \frac{F_{1-3-X}}{F_{1-3}}
      • F_{1-3-X} = F_{1-3} \cos\alpha
      • F_{1-3-X} = \cos\alpha *  \frac{K * q_1 * q_3}{L^2}
    • \sin\alpha = \frac{F_{1-3-Y}}{F_{1-3}}
      • F_{1-3-Y} = F_{1-3} \sin\alpha  
      • F_{1-3-Y} = \sin\alpha * \frac{K * q_1 * q_3}{L^2}
  • F_{2-3} = F_{2-3-X} = \frac{K * q_2 * q_3}{L^2}
    • F_{2-3-Y} = 0
  • \sin\beta = \frac{F_{total-1-2-Y} }{F_{total-1-2} }
  • \cos\beta = \frac{F_{total-1-2-X} }{F_{total-1-2} }
  • F_{total-X} = F_{1-3-X} + F_{2-3-X}
    • F_{total-X} = \left( \cos\alpha *  \frac{K * q_1 * q_3}{L^2} \right)  + \frac{K * q_2 * q_3}{L^2}  
    • F_{total-X} = \left( \frac{K * q_3}{L^2} \right) * ((q_1 * \cos\alpha) + q_2)
  • F_{total-Y} = F_{1-3-Y} + F_{2-3-Y} =  F_{1-3-Y}
    • F_{total-Y} = \sin\alpha * \frac{K * q_1 * q_3}{L^2}
  • \tan\beta = \frac{F_{total-y}}{F_{total-X}}
    • \tan\beta = \frac{\sin\alpha * \frac{K * q_1 * q_3}{L^2}}{\left( \frac{K * q_3}{L^2} \right) * ((q_1 * \cos\alpha) + q_2)}
    • \tan\beta = \frac{\sin\alpha * q_1}{ (q_1 * \cos\alpha) + q_2)}
    • \tan\beta * \cos\alpha * q_1 + \tan\beta * q_2 = q_1 * \sin\alpha
    • \tan\beta * q_2 = (q_1 * \sin\alpha) - (q_1 * \tan\beta * \cos\alpha))
    • \tan\beta * q_2 = q_1 * (\sin\alpha - (\tan\beta * \cos\alpha))
    • q_2 = \frac{q_1 * (\sin\alpha - ( \tan\beta * \cos\alpha))}{\tan\beta}

Process the two opposing charges

  • \tan\theta = \frac{F_{2-3}}{F_{1-2}}
    • \tan\theta = \frac{\frac{K * q_2 * q_3}{L^2}}{\frac{K * q_1 * q_2}{L^2}}
    •   \tan\theta = \frac{q_3}{q_1}
    • q_1 = \frac{q_3}{\tan\theta}

Calculate: Approach only based on electric charges

  •   \mbox{The angle data:}
    • \sin\alpha = \sin{60^\circ} = 0.866025
    • \cos\alpha = \cos{60^\circ} = 0.500
    • \tan\beta = \tan{23.41^\circ} = 0.432946
    • \tan\theta = \tan{30^\circ} = 0.57735  
  • q_2 = \frac{q_1 * (\sin\alpha - ( \tan\beta * \cos\alpha))}{\tan\beta}
    • q_2 = q_1 * \frac{(.866025 - (.432946 * .5))}{.432946}
    • q_2  = q_1 * \frac{.649552}{.432946} = q_1 * 1.500
  • q_1 = \frac{q_3}{\tan\theta}
    • q_1 = q_3 * \frac{1}{\tan\theta} = 1.732q_3
  • q_2 = 1.5  q_1 = 1.5 * 1.732 * q_3 = q_3 * 2.598 = 2.6q_3

 

Comparing Approaches

ChargeApproximationElectric Charges% Diff
q topQ1 = 2*Q3Q1 = 1.732*Q315.5 %
q rightQ2 = 2.22*Q3Q2 = 2.6*Q314.6 %

No comments:

Post a Comment